Problem 3

What is your physical interpretation of the problem?

$$
\begin{array}{cl}
\mathrm{PDE} & u_{t}=\alpha^{2} u_{x x} \quad 0<x<1 \quad 0<t<\infty \\
\mathrm{BCs} & \left\{\begin{array}{l}
u_{x}(0, t)=0 \\
u_{x}(1, t)=0
\end{array}\right. \\
\mathrm{IC} & u(x, 0)=\sin (\pi x) \quad 0 \leq x \leq 1
\end{array}
$$

Can you draw rough sketches of this solution for various values of time? What about the steady-state temperature?

Solution

This IBVP models the temperature in a homogeneous one-dimensional rod whose lateral side is insulated; both ends of the $\operatorname{rod}(x=0$ and $x=1)$ are thermally insulated. The initial temperature profile is given by $u=\sin (\pi x)$. Using the method of separation of variables, the solution to the IBVP is found to be

$$
u(x, t)=\frac{2}{\pi}-\frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1+(-1)^{n}}{n^{2}-1} e^{-\alpha^{2} n^{2} \pi^{2} t} \cos (n \pi x)
$$

Plot this function versus x at several times for $\alpha=1$ to illustrate the behavior of this solution.

Notice that the temperature profile is $u=\sin (\pi x)$ at $t=0$, but over time it approaches the steady state $u=2 / \pi$. The slope of the temperature curve is zero at $x=0$ and $x=1$, consistent with the boundary conditions.

